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OBJECTIVE

To identify the core gut microbial features associated with type 2 diabetes risk and
potential demographic, adiposity, and dietary factors associated with these
features.

RESEARCH DESIGN AND METHODS

We used an interpretable machine learning framework to identify the type 2
diabetes–related gut microbiome features in the cross-sectional analyses of three
Chinese cohorts: one discovery cohort (n5 1,832, 270 cases of type 2 diabetes) and
two validation cohorts (cohort 1: n5 203, 48 cases; cohort 2: n5 7,009, 608 cases).
We constructed a microbiome risk score (MRS) with the identified features. We
examined the prospective association of the MRS with glucose increment in
249 participants without type 2 diabetes and assessed the correlation between the
MRS and host blood metabolites (n5 1,016). We transferred human fecal samples
with different MRS levels to germ-free mice to confirm the MRS–type 2 diabetes
relationship. We then examined the prospective association of demographic,
adiposity, and dietary factors with the MRS (n 5 1,832).

RESULTS

The MRS (including 14 microbial features) consistently associated with type 2
diabetes,with risk ratio for per 1-unit change inMRS 1.28 (95%CI 1.23–1.33), 1.23
(1.13–1.34), and 1.12 (1.06–1.18) across three cohorts. The MRS was positively
associated with future glucose increment (P < 0.05) and was correlated with a
variety of gut microbiota–derived blood metabolites. Animal study further
confirmed the MRS–type 2 diabetes relationship. Body fat distribution was
found to be a key factor modulating the gut microbiome–type 2 diabetes
relationship.

CONCLUSIONS

Our results reveal a core set of gut microbiome features associated with type 2
diabetes risk and future glucose increment.

Type 2 diabetes is a complex disorder influenced by both host genetic and environ-
mental factors (1), and its prevalence is rising rapidly in both developed and developing
countries (2). Gut microbiome is considered as a modifiable environmental factor that
plays an important role in the development of type 2 diabetes (3). The research interest
in identification of gut microbiome–related treatment/prevention targets has recently
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emerged (4). Although there are a few
human studies investigating the associa-
tion of gut microbiome with type 2 di-
abetes in the past few years, the results
are inconsistent (5). So far, there is sparse
human evidence robustly linking specific
gut microbiome features to type 2
diabetes.
Machine learning has been widely

used in biomedical fields in recent years
(6).However, its application in theclinical
setting is still limited, as its predictions
are usually difficult to interpret. Of note,
with the methodology development in
the past few years, interpretable algo-
rithms couldunlock the traditional “black
box” of machine learning results (7). The
integration of the new algorithms with
large-scale gut microbiome data has the
potential to radically unveil the relation-
ship between gutmicrobiome and type 2
diabetes. Yet, no such investigation has
been done.
Therefore, in the current study, we

aimed to identify human gutmicrobiome
features associated with type 2 diabetes
using a novel interpretable machine
learning analytical framework in large-
scale human cohorts. We also assessed
the correlation between the identified
microbes and host blood metabolites to
provide insight into the role of type 2
diabetes–related gut microbiota in host
metabolism.We further performeda fecal
microbiota transfer experiment to confirm
the effect of the identified microbes on
type 2 diabetes development. As a sec-
ondary objective, we aimed to identify
potential adiposity, dietary, and lifestyle
factors that could modify the type 2 di-
abetes–related gut microbiome using our
longitudinal cohort data.

RESEARCH DESIGN AND METHODS

Study Design
The overview of the study workflow is
shown in Supplementary Fig. 1. We in-
cluded participants from three human
cohorts,GuangzhouNutritionandHealth
Study (GNHS) (8) as a discovery cohort
(n 5 1,832, 270 type 2 diabetes cases),
the control arm of a case-control study
of hip fracture (n 5 203, 48 cases) (9),
andGuangdongGutMicrobiomeProject
(GGMP) (n 5 7,009, 608 cases) (10) as
two validation cohorts.
In the discovery cohort and validation

cohort 1, prevalent type 2 diabetes cases
were ascertained based on fasting blood
glucose $7.0 mmol/L or HbA1c $6.5%

(48 mmol/mol) or current medical treat-
ment for type 2 diabetes at either of the
follow-up visits, according to the American
Diabetes Association criteria for the diag-
nosisofdiabetes(11). Invalidationcohort2,
type 2 diabetes was determined by self-
report (confirmed with medical history) or
fasting blood glucose $7.0 mmol/L.

The study design of GNHS has previ-
ously been described in detail (8). Stool
samples were collected onsite during
follow-up visits between 2014 and 2018.
Those with measurement of 16S rRNA
from stool samples were included in
the current study (n 5 1,935). Type 2
diabetes cases were ascertained at the
same time point or before the stool
collection. Study participants were ex-
cluded if they had unclear diabetes status
(n548), chronic renaldysfunction,orself-
reported cancers (n 5 55). Finally, 1,832
participants (270 case subjects, 117 with
the use of medication, 234 with glycemic
markers to meet the diagnostic criteria)
were included in the present analysis.
Among the included participants, there
were 249 participants who did not have
type2diabetes,whowerefollowedupfora
median of 3.4 years after the collection of
their stool samples (Supplementary Fig. 2).
These participants were included in our
longitudinal analysis of gut microbiome
with glucose increments. All 1,832 partic-
ipants were included in our longitudinal
analysis on the prospective association of
baseline factors with gut microbiome
(with a median follow-up of 6.2 years).

Detailed information of validation co-
hort 1 has previously been published (9).
Stool samples were collected onsite dur-
ing follow-up visits between February
2017 and May 2017. Type 2 diabetes
cases were ascertained at the same time
point or before the stool collection
(2015–2017). After adopting the same
inclusion and exclusion criteria as used
in GNHS, we included 203 participants
(48 case subjects, 24 with the use of
medication, and 38 glycemic markers to
meet the diagnostic criteria) with a mea-
surementof16S rRNA fromstool samples
in the present analysis.

GGMP (10) was conducted between
2015 and 2016; 7,009 participants (608
case subjects, 530 fasting blood glucose
$7.0 mmol/L) with measurement of 16S
rRNA from stool samples were included
in the current study. Type 2 diabetes
ascertainment and stool collection were
conducted at the same time point.

Fecal Sample Collection and 16S rRNA
Profiling
Microbial DNA extraction, PCR, and am-
plicon sequencingwere performed as pre-
viously described (see Supplementary
Material). FASTQ files were demulti-
plexed, merge paired, and quality filtered
by QIIME (Quantitative Insights Into Mi-
crobial Ecology software (version 1.9.0)
(12). Sequences were clustered into op-
erational taxonomic units with 97% sim-
ilarity and annotated based on the
Greengenes Database (version 13.8) (13).

Measurement of Metadata and
Metabolome Profiling
Detailed methods for the metadata mea-
surements and shotgun metagenome se-
quencing are provided in Supplementary
Material.

Metadata at the same point in time as
the stool sample collection were used as
the covariates. Characteristics for each
cohort were shown in Table 1.

Interpretable Machine Learning
Framework for Data Integration and
Explanation
We devised a model based on a gradient
boosting frameworkdLight Gradient
Boosting Machine (LightGBM) (14), a gra-
dient boostingdecision tree algorithmdto
link input features with type 2 diabetes. A
total of 297 host features that were po-
tentially related to type 2 diabetes in the
literature (metadata, gut microbiota com-
position, and diversity [see Supplementary
Material]) (15) were incorporated into our
machine learning model. We also com-
pared our model performance with other
widely used methods such as logistic re-
gression and random forest.

WeusedSHapleyAdditiveexPlanations
(SHAP) (7) to unlock themachine learning
results. The mean absolute value of the
SHAP values for each feature represents
their average contribution to the overall
model predictions. Thus, features with an
average absolute SHAP value .0 were
used as selected features. The inflection
point of SHAP dependence plots (x-axis
represents the feature variable, while y-
axis represents the SHAP value for the
feature variable) was defined as the op-
timal threshold for each selected feature.

Classification Analysis
We constructed a classifier based on the
identifiedmicrobiota features, host genet-
ics, and the traditional type 2 diabetes risk
factors separately (see Supplementary
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Material), and compared their predic-
tive performance. In addition, we ex-
cluded patients with prediabetes defined
by the criteria from the World Health
Organization (16) to reevaluate our
microbiome-based classifier performance
in the discovery cohort (302 participants
with prediabetes) and validation cohort
1 (46 participants with prediabetes).We
used DeLong’s test method to test the
difference between the classifier’s pre-
dictive performance before and after

exclusion of the patients with predia-
betes. Our predictor is based on code
adapted from sklearn 0.15.2 (17) LightGBM
class; R package pROC (18) was used for
receiver operating characteristic curve
analyses, and the method of DeLong was
used for area under the curve comparison.

Microbiome Risk Score Construction
We construct a microbiome risk score
(MRS) based on the machine learning–
selected microbiome features and their

SHAP values (for formula, see Supple-
mentary Material). We also constructed
another MRS following the conventional
method (19) and used a Poisson regression
to test the cross-sectional association of
the two constructed MRS models with
type 2 diabetes risk, respectively.

Gut Microbiota Transplantation
Nineparticipantswere randomly selectedas
the representative donors according to the
level of the MRS (range 0–14). A detailed

Table 1—Characteristics of the participants included in this study

Discovery cohort External validation cohort 1 External validation cohort 2

No. of participants 1,832 203 7,009

Type 2 diabetes case subjects, n (%) 270 (14.7) 48 (23.6) 608 (8.7)

Age (years) 64.8 (5.9) 71.7 (6.9) 52.7 (14.7)

Sex, n (%)
Women 1,223 (66.9) 152 (74.9) 3,848 (54.9)
Men 605 (33.1) 51 (25.1) 3,161 (45.1)

Marital status, n (%)
Married 1,663 (91.0) 148 (72.9) 6,322 (90.3)
Others 165 (9.0) 55 (27.1) 682 (9.7)

Education, n (%)
Middle school or less 490 (26.8) 28 (14.6) 5,326 (76.0)
High school or professional college 846 (46.3) 34 (17.7) 1,398 (19.9)
University 492 (26.9) 130 (67.7) 280 (4.0)
Unknown 5 (0.1)

Income (yuan/month/person), n (%)
#500 27 (1.5) 1 (0.5) 834 (11.9)
501–1,500 388 (21.2) 3 (1.5) 2,067 (29.5)
1,501–3,000 1,175 (64.3) 30 (15.1) 996 (14.2)
.3,000 238 (13.0) 165 (82.9) 481 (6.9)
Unknown 2,631 (37.5)

Height, cm 158.4 (10.4) 154.7 (11.8) 158.0 (8.5)

Weight, kg 59.4 (10.2) 58.3 (9.9) 58.5 (10.9)

BMI, kg/m2 23.6 (3.4) 25.5 (15.5) 23.4 (3.5)

Waist circumference, cm 85.2 (9.3) 83.5 (9.9) 80.3 (9.9)

Hip circumference, cm 91.7 (11.6) 91.3 (6.6)

Neck circumference, cm 34.0 (3.2) 33.2 (2.9)

DBP, mmol/L 74.0 (12.3) 74.1 (9.5) 77.7 (11.5)

SBP, mmol/L 120.8 (17.0) 125.6 (16.3) 131.7 (21.7)

Fasting glucose, mmol/L 5.5 (1.3) 5.7 (1.3) 5.6 (1.7)

HDL, mmol/L 1.5 (0.4) 1.5 (0.4) 1.3 (0.5)

LDL, mmol/L 3.6 (1.0) 3.6 (1.1) 3.3 (0.9)

TC, mmol/L 5.5 (1.1) 5.6 (1.3) 5.3 (0.9)

TG, mmol/L 1.6 (1.1) 1.7 (1.9) 1.4 (1.6)

Current smoking status, n (%) 144 (7.9) 27 (14.1) 1,815 (26.1)

Current tea drinking, n (%) 1,051 (57.7) 108 (56.3)

Current alcohol drinking, n (%) 136 (7.4) 19 (9.9) 2,752 (39.3)

Physical activity, MET 40.6 (14.1) 91.6 (51.1)

Total energy intake, kcal/day 1,763.1 (568.3) 1,631.0 (570.5)

Vegetable intake, g/day 369.4 (176.8) 427.0 (201.3) 336.3 (229.2)

Fish intake, g/day 50.5 (51.9) 43.0 (50.0)

Red and processed meat intake, g/day 83.6 (62.3) 72.0 (47.0) 131.2 (133.8)

Fruit intake, g/day 150.9 (198.5) 132.1 (84.5) 79.4 (133.6)

Yogurt intake, g/day (dry weight) 4.7 (15.6) 3.8 (6.2)

Data are means (SD) unless otherwise indicated. DBP, diastolic blood pressure, SBP, systolic blood pressure; TC, total cholesterol; TG, triglycerides.
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description of fecal suspension inoculum
preparation and transplantation is provided
in Supplementary Material.
The study protocols were approved

by the local Ethical Review Committee,
Guangzhou, China, and all human par-
ticipants gave written informed consent.

Statistical Analysis
Statistical analysis was performed with
Stata 15 (StataCorp, College Station, TX).
For the discovery cohort and external
validation cohort 1, a multivariable Pois-
son regression model was used to ex-
amine the cross-sectional associationwith
type 2 diabetes for MRS and each
machine learning–identified taxa-related
feature as a continuous variable or as a
binaryvariable: higher abundance (i.e., at
or above the optimal threshold) com-
pared with lower abundance (i.e., below
the optimal threshold), with adjustment
for age, sex, BMI, waist circumference,
household income, marital status, and
self-reported educational level, total
energy intake,alcoholdrinking, and smok-
ing. For external validation cohort 2, all
aforementioned covariates except total
energy intake (not available) were used in
the statistical model. We combined the
effect estimates from the three cohorts
using random-effects meta-analysis. We
repeated the above analysis in the dis-
covery cohort usingMRSderived from the
same microbial features of metagenomic
data to test the robustness of 16S results.
We also used a Poisson regression to

estimate the interaction ofMRSwith age
and sex on type 2 diabetes risk and
performed subgroup analysis for the
MRS–type 2 diabetes relationship strat-
ifiedby age (,64.3 years vs.$64.3 years,
with 64.3 years as the median age of this
cohort) and sex in the discovery cohort.
We used a linear regressionmodel to ex-

plore the association of baseline MRS with
glucose increments in thenext 3 years,with
adjustment for demographic, dietary, and
lifestyle factors. Sensitivity analysis was con-
ducted by adding baseline fasting glucose to
test the influence of baseline fasting glucose
on the performance of the above model.
The association of the MRS with host

circulating metabolites was assessed
by Spearman correlation. Those MRS-
metabolite associations that survived the
multiple testing correction (Benjamini-
Hochberg method) in the discovery co-
hort were further chosen for replication
in the external validation cohort 1.

In the discovery cohort, linear regres-
sion was used to estimate the difference
in MRS per-quartile change for continu-
ous dietary factors, per-unit change for
adiposity factors, or per-category change
for categorical (ordinary) factors in the
baseline tested factors, with adjustment
for demographic factors and type 2 di-
abetes medication use and mutual ad-
justment for the other tested adiposity,
dietary, and lifestyle factors. The tested
adiposity, dietary, and lifestyle factors
included BMI, hip circumference, waist
circumference, neck circumference, total
energy intake, alcohol drinking, smoking,
tea drinking, vegetable intake, fruit in-
take, fish intake, red and processedmeat
intake, yogurt intake, and physical activ-
ity. The adjusted demographic factors
included age, sex, household income,
marital status, and educational level.

In both the discovery cohort and the
external validation cohort 1, we used a
linear regression model to assess the
cross-sectional association of MRS with
body fat distribution, with adjustment for
the demographic, dietary, and lifestyle
factors. In both cohorts, Poisson regres-
sion was used to estimate interaction of
MRSwith trunk fat–to–limb fatmass ratio
for type 2 diabetes risk, with adjustment
for the aforementioned covariates.

For the results of the animal study,
ANOVA was used for comparison be-
tween multiple groups. The Benjamini-
Hochberg method was used to control
the false discovery rate. P values ,0.05
were considered significant.

Data and Resource Availability
For the discovery and external validation
cohort 1, the raw data for 16S rRNA gene
sequences are available in CNGB Sequence
Archive (CNSA) (https://db.cngb.org/cnsa/)
of China National GeneBank (CNGBdb),
accession number CNP0000829. For the
external validation cohort 2, the raw data
for 16S rRNA gene sequences are available
from the European Nucleotide Archive
(ENA) (https://www.ebi.ac.uk/ena/), ac-
cession number PRJEB18535.

RESULTS

The Identified Combination of
Microbes Is Strongly Predictive of
Type 2 Diabetes Risk
LightGBM (14), used in the current
study, outperformed the logistic regres-
sion and random forest in type2diabetes
prediction (Supplementary Table 1). We

identified 21 features that contributed
to type 2 diabetes prediction, of which
15weremicrobiome features (unweighted_
nmds6 and observed_species were indica-
tors of microbial diversity, and others were
taxa-related features) (Supplementary Fig.
3). The 21 identified features showed a
similarpredictivecapacitycomparedwithall
297 input features (SupplementaryTable2),
andthemajorityoftheselectedtaxa-related
features had a low-to-modest intercorrela-
tion (Supplementary Fig. 4).

The selectedmicrobiome features showed
superior type 2 diabetes prediction accu-
racy compared with the host genetics and
otherenvironmental factors (Framingham-
Offspring Risk Score [FORS]1 lifestyle1
diet) (Fig. 1A). An addition of the se-
lected microbiome features to the model
(FORS 1 lifestyle 1 diet) increased the
area under the curve from 0.63 (95% CI
0.55–0.71) to0.73 (95%CI0.66–0.8) in the
internal validation cohort (P 5 0.0024),
0.66 (95% CI 0.57–0.76) to 0.73 (95% CI
0.65–0.82) in the internal test cohort (P5
0.016), and 0.51 (95% CI 0.45–0.57) to
0.64 (95% CI 0.56–0.71) in the external
validation cohort 1 (P 5 0.0036), respec-
tively. There was no significant difference
in the microbiome-based classifier’s pre-
dictive performance before and after
exclusion of the patientswith prediabetes
in the discovery cohort (P 5 0.49) and
validation cohort 1 (P 5 0.14).

Toestimate individualmicrobiomerisk
for type 2 diabetes development, we
generated an MRS (score range 0–14)
based on the 14 identified microbiome
features (Table 2). We found that the
MRS (per 1-unit change in MRS) consis-
tently showed a positive associationwith
type 2 diabetes risk in the discovery
cohort (risk ratio [RR] 1.28, 95% CI
1.23–1.33), external validation cohort
1 (RR 1.23, 95% CI 1.13–1.34), and ex-
ternal validation cohort 2 (RR 1.12, 95%
CI 1.06–1.18) (Fig. 1B and Supplementary
Table 3). We also found the MRS–type
2 diabetes association could be replicated
based on data from 1,068 shotgun meta-
genomic samples in the discovery cohort
(including159case subjects). In agreement
with the 16S rRNA results, themetagenome-
based MRS consistently showed a positive
association with type 2 diabetes risk (per-
unit change in new MRS: RR 1.33, 95% CI
1.17–1.51) (Fig. 1B). However, results
from the conventional method–derived
MRS could not be validated in the two
external cohorts (Supplementary Fig. 5).
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There was no significant interaction
between MRS and age (Pinteraction 5
0.8) or MRS and sex (Pinteraction 5 0.3)
for type 2 diabetes risk in the discovery
cohort. Subgroup analysis for the MRS–
type 2 diabetes relationship stratified by
age and sex produced similar results
(Supplementary Table 4).

Factors Underlying Type 2 Diabetes
Prediction
Our results indicated that individ-
uals age .66.7 years or with waist

circumference .84.6 cm were at high
risk of type 2 diabetes (Supplementary
Fig. 6). This is consistent with the stand-
ards of medical care for type 2 diabetes
in China (20,21), which suggests that
individuals .65 years old or with waist
circumference .85 cm (male) or 80 cm
(female) are at high risk of type 2
diabetes.

We identified the optimal threshold
of the identified13 taxa-related features
according to their SHAP dependence
plots (Supplementary Table 5). Eight

of 13 taxa-related features showed sta-
tistically significant associations with
type 2 diabetes when they were treated
as binary variablesdhigh abundance
(i.e., at or above the optimal threshold)
comparedwith low abundance (i.e., below
the optimal threshold) (Supplementary
Fig. 7A)dwhile only 3 taxa-related fea-
tures showed significant association with
type 2 diabetes if the abundance of the
selected microbiome was treated as a
continuous variable (Supplementary Fig.
7B).

Figure 1—Identified gutmicrobiota affect type 2 diabetes development and host serummetabolites.A: Algorithmperformance in the discovery cohort
and external validation cohort 1 based on the selected microbiome features, host genetics, lifestyle and diet, type 2 diabetes traditional risk factors
(FORS, includingage, sex, parental historyof diabetes, BMI, systolicbloodpressure,HDL, triglycerides, andwaist circumference), and their combination.
B: Association of the MRS with type 2 diabetes risk in the discovery cohort, external validation cohort 1, and external validation cohort 2. Poisson
regression was used to estimate the RR and 95% CI of type 2 diabetes per 1-unit change in the MRS, with adjustment for demographic, dietary, and
lifestyle factors.C: Associationbetween theMRSandprospective glucose incrementsover 3 years in thediscovery cohort. Linear regressionwasused to
estimate the difference in future fasting glucose per unit change in theMRS in a cohort of 249 individuals without type 2 diabetes, with adjustment for
demographic, dietary, and lifestyle factors (model1). Sensitivityanalyseswereconductedbyaddingbaseline fastingglucose in theabovemodel 1 to test
the influence of baseline fasting glucose on the performance of our model (model 2). D: Association of the MRS with host circulating metabolites.
Spearman correlation coefficients between the MRS and the host serummetabolites were calculated. TheMRS-metabolite associations were further
replicated in the external validation cohort 1. *P , 0.05; #P , 0.01; 1P , 0.001.
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The Identified Combination of
Microbes Is Longitudinally Associated
With Glucose Increments
We conducted a prospective investiga-
tion among 249 participants with normal
fasting glucose (fasting glucose ,7
mmol/L) at baseline. Themean (SD) initial
and end blood glucose level of this group
was 5.2 (0.5) mmol/L and 5.4 (0.6) mmol/
L, respectively. Our results showed that
MRS was significantly positively associ-
ated (P, 0.05) with future glucose incre-
ments in two statistical models (Fig. 1C).

Correlation of the Identified
Combination of Microbes With Host
Blood Metabolome
We performed targeted metabolomics
profiling of serum samples from the
discovery cohort (n5 903) and external
validation 1 (n 5 113) and assessed
the correlation of the type 2 diabetes–
related combination of microbes (i.e.,
MRS) with 199 serum metabolites. Par-
ticipants with a history of type 2 di-
abetes medication use were excluded
from this analysis. The serum samples
were collected at the same point in time
as the stool samples. We found that the
MRSwas consistently correlatedwith six

metabolites in the discovery cohort and
external validation cohort 1 (Fig. 1D).

The MRS was negatively correlated
with 2-phenylpropionate, hydrocinnamic
acid, and indole-3-propionic acid, which
were all associated with gut microbiome
metabolism(22–24).Deoxycholicacidand
deoxycholic acid glycine conjugate are
secondary bile acids produced by the
actionofenzymesexisting in themicrobial
flora of the colonic environment (25).
Recent studies have revealed that alter-
ationofgutmicrobiotanotonlycouldaffect
the bile acid pool but also could influence
thebileacid receptorsignaling (i.e., FXRand
TGR5). The FXR has been reported to be
involved in glucose homeostasis, energy
expenditure, and lipid metabolism (26).
These observations provide insight into
the potential function and mechanism of
our identified microbial features, repre-
sented by the MRS, in host metabolism.

The Identified Combination of
Microbes Affects Type 2 Diabetes
Development in Germ-Free Mice
There was no significant difference in
basal fasting glucose among the four
experimental groups (P 5 0.11). Mice
transplanted with the gut microbiota from

high-MRS individuals, of either non–type
2 diabetes or type 2 diabetes status,
showed a significant increase in fasting
glucose levels compared with levels of
the low-MRS individuals or germ-free
control mice (Supplementary Fig. 8A–C).
There was no significant difference in
fasting glucose between the germ-free
control group and the low-MRS group.

Baseline Adiposity and Dietary Factors
Can Modulate the Type 2 Diabetes–
Related Microbiome
In the longitudinalanalysisof thediscovery
cohort, baseline BMI was positively associ-
atedwith theMRS, while hip circumference
and tea drinking were inversely associated
(Fig. 2A and Supplementary Table 6).

Body Shape Is Associated With Gut
Microbiome, Modulating the
Association of Gut Microbiome With
Type 2 Diabetes
Obesity is the most important risk factor
for type 2 diabetes (27). As BMI and hip
circumference are closely correlated with
MRS in our study, we hypothesized that
the relationship of gut microbiome with
type 2 diabetes might be modulated by
adiposity status.MRS (per1-unit change in
MRS) was positively associated (P, 0.05)
with the distribution of trunk–to–limb fat
ratio in the discovery cohort (b 0.007, 95%
CI 0.0037–0.011) and external validation
cohort 1 (b 0.015, 95% CI 0.0023–0.03)
(Fig. 2B and Supplementary Tables 7 and
8). We found a significant interaction
between MRS and trunk–to–limb fat
mass ratio for type 2 diabetes risk in
the discovery cohort (Pinteraction 5
0.012) and external validation cohort
1 (Pinteraction 5 0.037), with adjustment
for potential confounders (Fig. 2C). In the
discovery cohort, adjusted RR (95% CI) of
type 2 diabetes was 1 (reference), 1.83
(0.86–3.88), and 3.61 (1.81–7.18) for ter-
tiles 1, 2, and 3 of trunk-to-limb fat mass
ratio among individuals in the lowestMRS
levels (MRS tertile 1). It was 4.5 (2.21–
9.17), 6.14 (3.12–12.08), and 11.79 (6.28–
22.16) among individuals in the highest
MRS tertile. Similar interaction results
were found in the external validation
cohort 1 (Fig. 2C).

CONCLUSIONS

In the current study, we identify a robust
combination of gut microbes associ-
ated with type 2 diabetes by integrat-
ing a cutting-edge interpretable machine

Table 2—List of components included in the MRS construction

Microbiome Taxa annotation

f__lactobacillaceae p__Firmicutes; c__Bacilli; o__Lactobacillales;
f__lactobacillaceae

c__alphaproteobacteria p__Proteobacteria; c__alphaproteobacteria

f__mogibacteriaceae p__Firmicutes; c__Clostridia; o__Clostridiales;
f__mogibacteriaceae

g__clostridiaceae spp p__Firmicutes; c__Clostridia; o__Clostridiales;
f__Clostridiaceae; g__

c__deltaproteobacteria p__Proteobacteria; c__deltaproteobacteria

g__butyrivibrio p__Firmicutes; c__Clostridia; o__Clostridiales;
f__Lachnospiraceae; g__butyrivibrio

o__lactobacillales p__Firmicutes; c__Bacilli; o__lactobacillales

f__comamonadaceae p__Proteobacteria; c__Betaproteobacteria;
o__Burkholderiales; f__comamonadaceae

g__roseburia p__Firmicutes; c__Clostridia; o__Clostridiales;
f__Lachnospiraceae; g__roseburia

g__megamonas p__Firmicutes; c__Clostridia; o__Clostridiales;
f__Veillonellaceae; g__megamonas

g__mogibacteriaceae spp p__Firmicutes; c__Clostridia; o__Clostridiales;
f__mogibacteriaceae; g__

g__dorea p__Firmicutes; c__Clostridia; o__Clostridiales;
f__Lachnospiraceae; g__dorea

s__dispar p__Firmicutes; c__Clostridia; o__Clostridiales;
f__Veillonellaceae; g__Veillonella; s__dispar

Observed species (an indicator of the
gut microbial diversity)

TheMRS is generated based on 14 microbiome features, including 13 taxa and 1 microbial alpha-
diversity index (i.e., observed species).
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learning framework with large-scale hu-
man cohort studies. The combination of
gut microbes shows superior type 2 di-
abetes prediction accuracy compared
with host genetics or traditional risk
factors. Additionally, we construct a
novel risk score for the gut microbiome
and successfully replicate the MRS–type
2 diabetes association in another two
independent cohorts. We then reveal
that the MRS is correlated with a few
gut microbiota–derived blood metabo-
lites. The fecal microbiota transfer ex-
periment further confirms the effect of
the identified combination of microbes
on type 2 diabetes development. Finally,

we identify potential modulating factors
that couldmodulate the type 2 diabetes–
related microbiome features and dem-
onstrate that the relationship between
MRS and type 2 diabetes could be mod-
ified by body fat distribution.

Microbiome data are highly dimen-
sional, underdetermined, and over-
dispersed. These features challenge
standard statistical tools, making results
from both traditional parametric and
nonparametric models unsatisfactory
(28). On the other hand, multiple host
anthropometric, dietary, and lifestyle
factors play important roles in shaping
the microbiome composition (29), while

large human cohorts that take into ac-
count these confounders are necessary
but are thus far sparse. Here, we used a
machine learning algorithm (LightGBM)
(14) to link multiple features with type 2
diabetes.We also interpret the results of
the “black box”machine learningmodels
with a recently developed novel tool:
SHAP (7). Compared with other inter-
pretingmethods such as gain, split count,
andpermutationmethod, SHAPhasbeen
theoretically verified as the only consis-
tent and locally accurate method to in-
terpret machine learning results (30).
We demonstrated that our new analytic
framework could effectively integrate data

Figure 2—Adiposity anddietary factorsmodulate the associationbetweengutmicrobiomeand type2diabetes.A: Associationof baseline adiposity and
dietary factorswith themicrobiome risk score (MRS). Linear regressionwas used to estimate the difference inMRS per quartile (for continuous dietary
factors), per unit (for adiposity factors), or per category (for ordinary factors) change in the baseline tested factors, with adjustment for demographic
factors and type 2 diabetes medication use andmutual adjustment for the other tested adiposity, dietary, and lifestyle factors. We only present those
adipose, dietary, or lifestyle factors showing significant association with the MRS in the figure. B: Association betweenMRS and trunk fat–to–limb fat
mass ratio in the discovery cohort and external validation cohort 1. Linear regressionwas used to estimate the difference in trunk fat–to–limb fatmass
ratio per unit change in theMRS,with adjustment for demographic, dietary, and lifestyle factors. C: Interaction betweenMRS and trunk fat–to–limb fat
mass ratio for type 2 diabetes risk. Poisson regression was used to estimate the interaction of MRS and trunk fat–to–limb fat mass ratio for type 2
diabetes risk, with adjustment for demographic, dietary, and lifestyle factors. RR (95% CI) of type 2 diabetes byMRS stratified by trunk fat–to–limb fat
mass ratio tertile (T) or RR (95% CI) of type 2 diabetes by trunk fat–to–limb fat mass ratio stratified by MRS tertile is presented.
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from different dimensions and help unlock
the machine learning results. This ana-
lytic framework could be used for other
multiomics research as welldbeyond
gut microbiome.
We discovered 11 microbiota taxa as

novel predictive factors for type 2 diabe-
tes risk, including c_alphaproteobacteria,
c_deltaproteobacteria, o_lactobacillales,
f_comamonadaceae, and seven micro-
biota taxa from the order Clostridiales
(f_mogibacteriaceae, g_clostridiaceae
spp, g_butyrivibrio, g_megamonas, g_
mogibacteriaceae spp, g_dorea, and
s_dispar). These seven taxa from the
order Clostridiales were enriched in the
healthycontrolsubjects ratherthantype2
diabetes case subjects in our present
study. We also confirmed several taxa
(g_roseburia and f_lactobacillacea) that
have previously been reported (31–36).
The roseburia, which was decreased in
our patients with type 2 diabetes, is a
butyrate-producing genus and has been
shown to causally improve glucose toler-
ance (31,32). In line with the previous
literature indicating that genus lactoba-
cillus might contribute to chronic inflam-
mation in diabetes development (33,34),
we also found that the family lactobacil-
laceae was enriched in the participants
with type 2 diabetes and had a strong
predictive power for type 2 diabetes.
Although based on the different micro-
biome analysis methods, the two shotgun
metagenomics–based studies (35,36) con-
sistently showed a decrease in roseburia
species and an increase in lactobacillus
species in type 2 diabetes case subjects
compared with control subjects. Specially,
lactobacillus species had the highest score
for the identification of patients with
type 2 diabetes in a European study
(36). Due to the translational nature of
the present project, we did not further
investigate the functionality of each iden-
tified gut microbial taxa; rather, we were
more interested in the role of the overall
microbiome combination and pattern.
Someof themicrobiota taxa that differ

between individuals with and without
type 2 diabetes were reported to be
related to obesity (37,38). For example,
obesitywas characterized by an increased
abundance of lactobacillaceae and de-
creased abundance of several groups
within class Clostridia in a prior human
cohort (37). Animal studies demonstrated
that reduction in the diversity and func-
tion of the Clostridia might contribute to

obesity development potentially via
downregulated genes that control lipid
absorption (38). Together, the available
evidence suggests that the progression
fromobesity to type2diabetesmaybe, in
part, mediated by the gut microbiome.

The prospective investigation of the
gut microbiome–glucose association has
rarely been conducted in the previous
cohort studies, which exclusively inves-
tigated a cross-sectional association of
gut microbiome with type 2 diabetes or
related traits (5,34,35). A recent cross-
sectional study demonstrated that the
link between the overall gut microbiota
composition and fasting glucose was rel-
atively weak (39). In our study, we
identified a set of core discriminative
gut microbiota between participants with
and without type 2 diabetes, which was
prospectively associated with fasting
glucose in humans, and then the results
were confirmed in ananimal study. There-
fore, our study design was more compre-
hensive than the previous cross-sectional
study (39). Furthermore, our results high-
lighted that the core gut microbiota,
rather than overall gut microbiota com-
position, was related to fasting glucose
and played an important role in type 2 di-
abetes development. Integration of MRS–
blood metabolome analysis revealed the
potential mechanism of the MRS–type
2diabetes association, involving a variety
of gut microbiota–derived metabolites,
although the detailed mechanism is yet
to be discovered.

We further demonstrated that higher
BMI or lower hip circumference is pos-
itively associated with futureMRS levels,
which indicates the potential role of
adiposity in gut microbiome. The evi-
dence was clearer when we found an
interaction between theMRS and trunk–
to–limb fat mass ratio, suggesting that
adiposity may be an effect modifier for
gut microbiome and type 2 diabetes
development. Taken together, our re-
sults highlight that a healthy body shape
may play an important role in maintain-
ing gut health.

This study has several strengths.
Firstly, we constructed a robust MRS
based on the identified microbiome–
type 2 diabetes relationship by applying
an interpretablemachine learning frame-
work in a large-scale human cohort. In
addition, we validated the identified
MRS–type 2 diabetes relationship in
two independent human cohorts and

germ-free mice, which has rarely been
achieved in prior studies (5,34,35,38). A
major limitation of the current study is
that our main results are based on the
cross-sectional association between the
gut microbiome and type 2 diabetes.
Nevertheless, we demonstrated the ef-
fect of the identified gut microbiome
features on type 2 diabetes development
using fecal transplantation with germ-
freemice and confirmed the longitudinal
association of the microbiome features
with glucose increment using prospec-
tive data. Another limitation is that in the
human cohorts or the animal study, we
did not perform the glucose tolerance
test or insulin tolerance test, which may
provide more information on the MRS–
type 2 diabetes relationship. Finally, all
participants included in the current study
aremiddle-aged andelderly Chinese, and
therefore caution should be taken in
extrapolating our findings to other age-
groups or ethnic groups.

In summary, we successfully inte-
grated the cutting-edge interpretable
machine learning framework and large-
scale human cohort studies, identifying
a core set of gut microbiome features
and their thresholds robustly associ-
ated with type 2 diabetes. The newly
discovered combination of microbes
can potentially be used as type 2 di-
abetes diagnostic, therapeutic, or pre-
ventive targets through diet and lifestyle
intervention.

Acknowledgments. The authors thank all the
participants of the cohorts for contributing stool
samples and phenotypes. The authors also thank
the Westlake University Supercomputer Cen-
ter for computational resources and related
assistance.
Funding. This study was funded by National
Natural Science Foundation of China (82073529,
81903316, 81773416), Zhejiang Province Ten-
thousand Talents Program (2019R52039), and the
5010 Program for Clinical Research (2007032) of
Sun Yat-sen University (Guangzhou, China).
Duality of Interest. No potential conflicts of
interest relevant to this article were reported.
Author Contributions. J.-S.Z., W.G., and Y.-m.C.
contributed to study conceptualization. J.-S.Z.
and W.G. contributed to development of meth-
odology. W.G. and Z.J. contributed to formal
analysis. C.-w.L., Y.H., J.-s.L., T.-y.S., and H.-l.Z.
contributed to data collection. C.-w.L., Y.H., F.X.,
and Z.M. contributed to data curation. W.G. and
J.-S.Z. contributed towriting themanuscript. J.-S.Z.,
W.G., Y.F., H.Z., Y.-m.C., Y.H., Z.J, C.-w.L., F.X.,
Z.M., T.-y.S., J.-s.L., and H.-l.Z. contributed to
writing, reviewing, and editing the manuscript.
J.-S.Z., Y.-m.C., and H.Z. contributed to funding

care.diabetesjournals.org Gou and Associates 365

http://care.diabetesjournals.org


acquisition. J.-S.Z. is the guarantor of this work
and, as such, had full access to all the data in the
study and takes responsibility for the integrity of
the data and the accuracy of the data analysis.

References
1. Franks PW, McCarthy MI. Exposing the ex-
posures responsible for type 2 diabetes and
obesity. Science 2016;354:69–73
2. Zhou B, Lu Y, Kaveh Hajifathalian JB; NCD Risk
Factor Collaboration (NCD-RisC). Worldwide
trends in diabetes since 1980: a pooled analysis
of 751 population-based studies with 4.4 million
participants. Lancet 2016;387:1513–1530
3. Tilg H, Moschen AR. Microbiota and diabetes:
an evolving relationship. Gut 2014;63:1513–1521
4. Petrosino JF. The microbiome in precision med-
icine: the way forward. Genome Med 2018;10:12
5. Gurung M, Li Z, You H, et al. Role of gut
microbiota in type 2 diabetes pathophysiology.
EBioMedicine 2020;51:102590
6. Beam AL, Kohane IS. Big data and machine
learning in health care. JAMA 2018;319:1317–
1318
7. Lundberg S, Lee SI. A unified approach to
interpreting model predictions. Advances in Neural
Information Processing Systems 30 (NIPS 2017).
Accessed 23 November 2020. Available from
https://papers.nips.cc/paper/7062-a-unifiedapproach-
to-interpretingmodel-predictions
8. Zhang ZQ, He LP, Liu YH, Liu J, Su YX, Chen YM.
Association between dietary intake of flavonoid
and bone mineral density in middle aged and
elderly Chinesewomen andmen. Osteoporos Int
2014;25:2417–2425
9. FanF, XueWQ,WuBH, et al. Higherfish intake
is associated with a lower risk of hip fractures in
Chinese men and women: a matched case-control
study. PLoS One 2013;8:e56849
10. He Y, Wu W, Zheng HM, et al. Regional
variation limits applications of healthy gutmicro-
biome reference ranges and diseasemodels. Nat
Med 2018;24:1532–1535
11. American Diabetes Association. Diagnosis
and classification of diabetes mellitus. Diabetes
Care 2014;37(Suppl. 1):S81–S90
12. Caporaso JG, Kuczynski J, Stombaugh J, et al.
QIIME allows analysis of high-throughput com-
munity sequencing data. Nat Methods 2010;7:
335–336

13. DeSantis TZ, Hugenholtz P, Larsen N, et al.
Greengenes, a chimera-checked 16S rRNA gene
database and workbench compatible with ARB.
Appl Environ Microbiol 2006;72:5069–5072
14. Ke G, Meng Q, Finley T, et al. LightGBM:
a highly efficient gradient boosting decision tree.
Advances in Neural Information Processing Sys-
tems 30 (NIPS 2017). Accessed 23 November
2020. Available from https://papers.nips.cc/
paper/6907-lightgbma-highly-efficient-gradient-
boosting-decisiontree
15. Noble D, Mathur R, Dent T, Meads C,
Greenhalgh T. Risk models and scores for type 2
diabetes: systematic review. BMJ 2011;343:d7163
16. World Health Organization. Definition and
Diagnosis of Diabetes Mellitus and Intermediate
Hyperglycemia: Report of a WHO/IDF Consulta-
tion. Geneva,World Health Org., 2006
17. PedregosaF,WeissR,BrucherM.Scikit-learn
machine learning in Python. J Mach Learn Res
2011;12:2825–2830
18. Robin X, Turck N, Hainard A, et al. pROC: an
open-source package for R and S1 to analyze and
compare ROC curves. BMC Bioinformatics 2011;12:77
19. Sullivan LM,Massaro JM, D’Agostino RBS Sr.
Presentation of multivariate data for clinical use:
the Framingham Study risk score functions. Stat
Med 2004;23:1631–1660
20. JiaW,Weng J, ZhuD, et al.; ChineseDiabetes
Society. Standards of medical care for type 2
diabetes in China 2019. Diabetes Metab Res Rev
2019;35:e3158
21. Society CD. China guideline for type 2 di-
abetes (2017 edition). China J Diabetes Mellitus
2018;10:34–86
22. Pedersen HK, Gudmundsdottir V, Nielsen
HB, et al.; MetaHIT Consortium. Human gut
microbes impact host serum metabolome and
insulin sensitivity. Nature 2016;535:376–381
23. Aura A. Microbial metabolism of dietary
phenolic compounds in the colon. Phytochem
Rev 2008;7:407–429
24. Velagapudi VR, Hezaveh R, Reigstad CS, et al.
The gut microbiota modulates host energy and
lipidmetabolism inmice. J Lipid Res 2010;51:1101–
1112
25. Sayin SI, Wahlström A, Felin J, et al. Gut
microbiota regulates bile acid metabolism by
reducing the levels of tauro-beta-muricholic
acid, a naturally occurring FXR antagonist. Cell
Metab 2013;17:225–235

26. Yu Y, Raka F, Adeli K. The role of the gut
microbiota in lipid and lipoprotein metabolism.
J Clin Med 2019;8:2227
27. Kahn SE, Hull RL, Utzschneider KM. Mech-
anisms linking obesity to insulin resistance and
type 2 diabetes. Nature 2006;444:840–846
28. Xia Y, Sun J. Hypothesis testing and statistical
analysis of microbiome. Genes Dis 2017;4:138–148
29. Falony G, Joossens M, Vieira-silva S, et al.
Population-level analysis of gut microbiome var-
iation. Science 2016;352:560–564
30. Lundberg SM, Erion GG, Lee S. Consistent
individualized feature attribution for tree en-
sembles. 2017 [preprint]. arXiv:1802.03888
31. Ryan KK, Tremaroli V, Clemmensen C, et al.
FXR is amolecular target for theeffectsof vertical
sleeve gastrectomy. Nature 2014;509:183–188
32. Sanna S, van Zuydam NR, Mahajan A, et al.
Causal relationships among the gut microbiome,
short-chain fatty acids and metabolic diseases.
Nat Genet 2019;51:600–605
33. Zeuthen LH, Christensen HR, Frøkiaer H.
Lactic acid bacteria inducing a weak interleukin-
12 and tumor necrosis factor alpha response in
human dendritic cells inhibit strongly stimulating
lactic acid bacteria but act synergistically with
gram-negative bacteria. Clin Vaccine Immunol
2006;13:365–375
34. Larsen N, Vogensen FK, van den Berg FWJ,
et al. Gutmicrobiota in human adults with type 2
diabetes differs from non-diabetic adults. PLoS
One 2010;5:e9085
35. Qin J, Li Y, Cai Z, et al. A metagenome-wide
association study of gut microbiota in type 2
diabetes. Nature 2012;490:55–60
36. Karlsson FH, Tremaroli V, Nookaew I, et al.
Gut metagenome in European women with
normal, impaired and diabetic glucose control.
Nature 2013;498:99–103
37. Peters BA, Shapiro JA, Church TR, et al. A
taxonomic signature of obesity in a large study of
American adults. Sci Rep 2018;8:9749
38. Petersen C, Bell R, Klag KA, et al. T cell-
mediated regulation of the microbiota protects
against obesity. Science 2019;365:9351
39. Wu H, Tremaroli V, Schmidt C, et al. The
gut microbiota in prediabetes and diabetes: a
population-based cross-sectional study. Cell
Metab 2020;32:379–390.e3

366 Gut Microbiome Features and Type 2 Diabetes Diabetes Care Volume 44, February 2021

https://papers.nips.cc/paper/7062-a-unifiedapproach-to-interpretingmodel-predictions
https://papers.nips.cc/paper/7062-a-unifiedapproach-to-interpretingmodel-predictions
https://papers.nips.cc/paper/6907-lightgbma-highly-efficient-gradient-boosting-decisiontree
https://papers.nips.cc/paper/6907-lightgbma-highly-efficient-gradient-boosting-decisiontree
https://papers.nips.cc/paper/6907-lightgbma-highly-efficient-gradient-boosting-decisiontree

